
Artur Andrzejak Nov 17th, 2011

Accelerating scientific computing
without driving up the costs

Prof. Dr. Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de/

artur@uni-hd.de

http://pvs.ifi.uni-heidelberg.de/�

Artur Andrzejak Nov 17th, 2011

High-Performance Computing at ZIB Berlin

• ZIB operates a High
Performance Computing
(HPC) system HLRN-II

• Ranked 39 in Top500
Supercomputing Sites

• Researchers (users) want
to compute faster – why?

• Usage of HLRN-I in 2008
(previous system)

Geosciences
37.2%

Physics
27.5%

Chemistry
23%

Engineering
6.8%

Other
2.8%

Bioinformatics
2.7%

Artur Andrzejak Nov 17th, 2011

Time-to-Solution is Important

• Researchers work to a large extend in an "exploratory"
way
– They evaluate last results and decide then on the next job(s)
– Waiting time for a batch computation to finish is called Time-to-

Solution

• Shortening the Time-to-Solution reduces
significantly the total time of exploration

... Computation
Evaluation

&
Decisions

Computation ...

Time-to-Solution

Artur Andrzejak Nov 17th, 2011

Faster Computing => More Processors?

• Parallelization is the primary way to speed up computations
• Processor count in supercomputers increases each year

– Speed of a rank X supercomputer doubles every 13 months
– But # transistors ~ # cores per chip doubles only every 24 months

• This implies higher costs - mainly due to power

Cray X-
MP/24

Cray Y-
MP4/264

Cray T3D
SC 192

Cray T3E IBM 690
pSeries

SGI ICE

Year 1986 1992 1994 1997 2002 2008

GFlops/s 0.47 1.33 38 363 2662 125,000

Processors 2 4 192 512 512 ~ 2500

Power (kW) 90 160 600

Supercomputers at ZIB

Artur Andrzejak Nov 17th, 2011

Making Time-To-Solution Cheaper

A. Online Computing with MapReduce
Using preliminary results for accelerating decisions
about next exploratory steps

B. Resources with Heterogeneous Availability
Combining highly available (and thus expensive)
resources with less available but cheaper ones

Artur Andrzejak Nov 17th, 2011

ONLINE COMPUTING WITH MAPREDUCE

Artur Andrzejak Nov 17th, 2011

MapReduce Programming Model

• Re-discovered by Google with goals:
– "Reliability has to come from the software"
– "How can we make it easy to write distributed

programs?"

• A major tool at Google

– 2.2 million jobs in September 2007 (http://goo.gl/dsnDl)
– In 2008 about 100k MapReduce jobs per day

• over 20 petabytes of data processed per day
• each job occupies about 400 servers

Artur Andrzejak Nov 17th, 2011

Example: Reverse Web-Link Graph

A Problem suitable for MapReduce:
 In a set of html-documents, find out which other

documents point (via links) to it (for each document)

?
?

?

? ?

?

Artur Andrzejak Nov 17th, 2011

Reverse Web-Link Graph: Solution

1. For each link to target t
found in document
source emit (t, source)

2. Sort all pairs by same t's

3. Results are lists:
 listt(source) for each t

source
s1 (a, s1)

(b, s1)
(c, s1)

source
s2 (c, s2)

(b, s2)

a: (a, s1)
b: (b, s1) (b, s2)
c: (c, s1) (c, s2)

lista(s1)
listb(s1, s2)
listc(s2, s2)

a

b
c

c

b

parallel MAP

parallel SORT

parallel REDUCE

Artur Andrzejak Nov 17th, 2011

Distributed MapReduce Frameworks

• Large data sets require distribution
– e.g. 1000s of map / reduce tasks in parallel

• Not only Google: Hadoop is an open-source
implementation

workers

workers

map

map

…

write <t, source>
to local disks

result file

result file
…

sort

sort

remote
data reads

reduce

reduce

result 1

result k

…

…

…

t: s1, s2,… master

sort <t, source>
by keys (t's)

I
n
p
u
t

1

2

3 4

5

Artur Andrzejak Nov 17th, 2011

Online Aggregation

• J. M. Hellerstein, P. Haas and H. Wang introduced in 1997 the
concept of Online Aggregation
– Report online preliminary results (and confidence intervals) for very

large queries

• Shortens „Time-to-Decision“ in an exploratory data study

– Allows to cancel a futile query prematurely
– … Or stop fast if results are precise enough
– Helps to identify early how to drill down data

SELECT AVG(final_grade) from grades
WHERE course_name = `CS186`
GROUP BY major;

Artur Andrzejak Nov 17th, 2011

Online Computing

• Generalizing to Online Computing
– Arbitrary computations / data analysis
– Parallelization

• Parallelization gives two dimensions of scalability

Degree of exploiting preliminary results

D
eg

re
e

of
 p

ar
al

le
liz

at
io

n

Online Aggregation

Tr
ad

iti
on

al
 H

PC

Problems beyond
reach of fastest
supercomputers

Artur Andrzejak Nov 17th, 2011

Online MapReduce

• We implemented an streaming version of MapReduce
– Shared-memory; Scala + Java
– Focus on data mining algorithms
– Independently: a TR „Online Hadoop“ from UC Berkeley

threads

S
t
r
e
a
m

map

map

…

…
 group

by key

result 1

result k

threads

reduce

reduce

…

…

messages

messages

online
collector

&
visualizer

control

For received <key, val>
forward val to “its” reducer

Artur Andrzejak Nov 17th, 2011

Applications to Data Analysis

• Goal: faster deciding in data analysis studies
– Estimating whether preliminary solution is stable enough
– Detecting changes in data profile

• Example: online convergence graph
– Updates periodically the history of preliminary results

M
is

cl
as

si
fic

at
io

n
ra

te

Training the Naive Bayes
model for classifying of
spam emails

Seen after 20% is processed

Seen after 40% of input is processed

Artur Andrzejak Nov 17th, 2011

Algorithms

• Simpler algorithms require only one MapReduce pass
– Aggregation (AVG, SUM, …), Linear regression, PCA,

Classification (Naïve Bayes), …

• Challenging are multi-pass algorithms
– For iterative approaches, e.g. clustering via k-means

• Efficiency dictates changes in algorithms / framework

Feeding back preliminary results to avoid multiple passes

threads

S
t
r
e
a
m

map

map

…

…
 group

by key

result 1

result k

threads

reduce

reduce

…

…

messages

messages

online
collector &
visualizer

control

Artur Andrzejak Nov 17th, 2011

K-Means Clustering Algorithm

mappers

compute
k clusters for D1

…

…

input
partition D1

reducer

merge
centroids for
D1,…,Dn to

global
centroids

…

centroids (D1)

online
collector

compute
k clusters for Dn

input
partition Dn

centroids (Dn)

updated
global
centroids

"error" of new
algorithm

"error" of
off-line
(standard)
algorithm

~ larger memory of mappers processed input fraction

"e
rr

or
"

Artur Andrzejak Nov 17th, 2011

Applications and Future

• Generic method => useful in several scientific domains
– Analysis of very large data sets: astrophysics; geo-sciences, …
– Analysis of data streams: network traffic analysis; particle

physics (LHC), …

• The MapReduce model will gain more importance for
scientific computing in the future
– Hides parallelism – programming distributed jobs much easier
– Prefers in-place computation with few communication phases:

higher parallel efficiency - due to the “memory-wall” effect

• Incremental version with “feeding back” preliminary
results facilitates porting of existing algorithms

Artur Andrzejak Nov 17th, 2011

More Research Problems

• How to enable machine learning algorithms to work
incrementally (online) and in parallel?

• How to help programmers to access / integrate
MapReduce processing in only few lines of code?

• How to reduce the inefficiencies of the frameworks
for smaller data sets?
– A job with 5 MB (linear regression) needs on Hadoop 30x longer

than on a simple “ad-hoc” MapReduce simulator with 2 threads

Artur Andrzejak Nov 17th, 2011

Efficient Map-Reduce

• One API but infrastructure-dependent middleware
– Dynamic selection of the right infrastructure depending on

the input size
– Challenges: coherent APIs and „semantics“; high

implementation effort

Developer Single API Infrastructure-Specific
Middleware

Infrastructure
Type

CPU

GPU

Cluster

Artur Andrzejak Nov 17th, 2011

MRStreamer

http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/

Features
• Efficient shared-memory processing and “flip-a-

switch” cluster processing
• Batch-mode and incremental (online) processing
• Hadoop-compatible APIs

http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�

Artur Andrzejak Nov 17th, 2011

RESOURCES WITH HETEROGENEOUS
AVAILABILITY

Artur Andrzejak Nov 17th, 2011

Hierarchy of Cheap Resources

• Commodity machines in data centers

• Amazon EC2 Spot Instances

• Institutional or privately-owned
 non-dedicated resources

Less control
of availability

Artur Andrzejak Nov 17th, 2011

Cheap Resources - EC2 Spot Instances

• Unused Amazon Elastic Compute Cloud (EC2) instances
• Price depends on user bids and fluctuates

– Example: US - N. Virginia; Linux; on Dec 30th, 2009, 17:00 CET

• Users receive requested instances only their maximum

bid is above the current Spot Price
• Consequence: lower costs but jobs can be

terminated without warning

Size On-Demand Inst. Spot Instances Price Ratio

Small $0.085 per hour $0.026 per hour 3.3 : 1

X-large $0.68 per hour $0.265 per hour 2.6 : 1

Artur Andrzejak Nov 17th, 2011

Collective Availability

• It is impossible to guarantee availability of any individual
cheap resource in a given time interval

• A new concept needed: collective availability
– For given n and T, a group of N ≥ n resources achieves

collective availability if at least n of these resources are still
available after time interval T

N = 6, n = 3
4 ≥ n survived, collective
availability achieved

time T

Artur Andrzejak Nov 17th, 2011

Ensuring Long-Term Operation

• We replace failed hosts periodically
• This causes costs due to

– data migration, re-computations since last checkpoint, execution delay, …
• Measured by migration rate := average (# failed resources / N))

in
iti

al
 d

at
a

m
ig

ra
tio

n

se
le

ct
io

n
of

 c
he

ap
 h

os
ts

working set
for interval i

host replacement
and data migration

...

interval i of
length T

...

...

...

...

...

Artur Andrzejak Nov 17th, 2011

Guarantees on Collective Availability

• Benefit: we can give statistical guarantees on
collective availability
– We control N (the total size of the resource group) and thus the

redundancy of cheap resources

• Problem A: Given n, T, and p – the availability level,

what is the minimum total group size N to ensure
collective availability with probability ≥ p?
– Probability is understood as the average number of successes

over many time intervals

Artur Andrzejak Nov 17th, 2011

Combining Resource Types

• We include a set of d highly available (and possibly
expensive) resources
– Cheap resources are a complement for expensive ones anyway

• This allows to balance cost against migration rate

desired
hosts n

all
 hosts N

expensive
hosts d

expensive
hosts

cheap
hosts

• Trade-offs (n and p
fix)
• Larger N: lower costs

but higher migration
rate

• Larger d: higher costs
but lower migration
rate

Artur Andrzejak Nov 17th, 2011

Pareto-Optimal Solutions

• We provide a user with a set Z of Pareto-optimal
solutions (N,d) such that
1. Each (N,d) ensures collective availability for given n, p, T
2. Neither N nor d can be decreased (with other parameter

constant) without violating 1.

N: total number of resources

d:
 n

um
be

r
of

 e
xp

en
si

ve

re
so

ur
ce

s Here:
under-provisioning
(1. violated)

Here:
over-provisioning A Pareto-optimal solution

(N*,d*) with known
• total costs
• migration rate

User‘s potential choices

Artur Andrzejak Nov 17th, 2011

Empirical Study

• We have conducted empirical study using real
availability data from ~10,000 SETI@home hosts
– Collected from Dec 2007 and Feb 2008 via BOINC clients

• Extreme case: least available type of cheap resources
– No data on EC2 Spot Instances, but the method would be

exactly the same

• Assumptions
– Cost of cheap resources: $0
– Cost of expensive resources: $0.10 per hour (~ Amazon‘s EC2)

Artur Andrzejak Nov 17th, 2011

0 10 20 30 40 50

50
55

60
65

0.2
0.4
0.6
0.8

d = # of expensive
resources

N = total #
of resources

Pr
ob

ab
ili

ty
 p

Simulation of Availability

• Probability p of achieving collective availability
– For different (N, d) combinations and n = 50 desired resources

Artur Andrzejak Nov 17th, 2011

52 54 56 58 60 62
0

10

20

30

40

50

N = total # of resources

d
=

 #
 o

f
ex

pe
ns

iv
e

re
so

ur
ce

s

Availability
level p
0.90-0.93
0.93-0.96
0.96-1.00

Pareto-Optimal Solutions (N,d)

• For different availability levels p
– Recall: migration rate := average of (# failed resouces / N)

cost = $4.3 per hour
migration rate = 0.01

cost = $0 per hour
migration rate = 0.1

User's choice depends on
application, budget, data center…

Artur Andrzejak Nov 17th, 2011

Selection of Individual Resources

• Select hosts which are most likely to be available in
the next time interval

• Short-term prediction of availability
– A trivial technique turned out as the best: use last availability state

as the prediction for next T hours

Initial
group

T

Which
failed?

Prediction Replacement

... x x
x

Initial
prediction

T

Artur Andrzejak Nov 17th, 2011

Conclusions

• Exploratory scientific computing and large-scale data
analysis profits from reduced Time-to-Solution

• There are approaches with better cost-efficiency
than increasing processor count

• Deployment depends on specific application
– Sensitivity of the application to resource failures
– Metrics to estimate quality of a preliminary solution

• There are several non-trivial research challenges
– Parallel and incremental machine learning algorithms

Artur Andrzejak Nov 17th, 2011

References

• Joos-Hendrik Böse, Artur Andrzejak, Mikael Högqvist: Beyond
Online Aggregation: Parallel and Incremental Data Mining
w ith Online MapReduce, ACM MDAC 2010, Raleigh, NC, 2010.

• Artur Andrzejak, Derrick Kondo, David P. Anderson: Exploiting
Non-Dedicated Resources for Cloud Computing, 12th IEEE/
IFIP Network Operations and Management Symposium (NOMS),
Osaka, 2010.

• Derrick Kondo, Artur Andrzejak, David P. Anderson: On Correlated
Availability in Internet-Distributed Systems, 9th IEEE/ACM
International Conference on Grid Computing (Grid), Tsukuba, 2008.

• Artur Andrzejak, Derrick Kondo, David P. Anderson: Ensuring
Collective Availability in Volatile Resource Pools via
Forecasting, 19th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM), Samos, 2008.

Artur Andrzejak Nov 17th, 2011

THANK YOU.
QUESTIONS?

Artur Andrzejak Nov 17th, 2011

ADDITIONAL SLIDES

Artur Andrzejak Nov 17th, 2011

ONLINE COMPUTING

Artur Andrzejak Nov 17th, 2011

MapReduce Programming Model

• Re-discovered by Google with goals:
– "Reliability has to come from the software"
– "How can we make it easy to write distributed programs?"

• „Scalable“ in the ratio of faults and in the degree of
parallelism

• A major tool at Google
– 29k jobs in August 2004 and 2.2 million in September 2007
– In 2008 about 100k MapReduce jobs per day

• each occupies about 400 servers
• takes about 5 to 10 minutes to finish

Artur Andrzejak Nov 17th, 2011

Very Fast Decision Trees

 Domingos und Hulten (2000): Hoeffding-Trees (VFDT, Very
Fast Decision Trees)

 Creates trees incrementally
 Uses Hoeffding inequality to decide how to extend a tree by

splitting dataset at a leaf
 It bounds (with high prob.) the error of new decision node

compared to the tree using all data ("off-line tree")
 Properties

 Need only one pass through data and memory ~ to tree size
 Very fast – I/O transfer is the bottleneck
 Asymptotically H-trees become same as off-line trees

Artur Andrzejak Nov 17th, 2011

Comparizon Hoeffding (VFDT) vs. C4.5

 Artificial data (100 attributes, 2 classes) (Domingos und Hulten 2000)
 Memory requirements of VFDT's were never larger than of C4.5

Accuracy

Number of
training
examples

Artur Andrzejak Nov 17th, 2011

RESOURCES AND COST:
VOLUNTARILY COMPUTING

Artur Andrzejak Nov 17th, 2011

Cost of Resouces

• Where is the second-fastest computer in the world?
• Almost everywhere: home / office PCs participating in

voluntarily computing provide largest computing power
• Folding@home: 6.5 petaflops as of Oct 2011

• K computer RIKEN (AICS): 8.7 PF (Jun 2011)

• PCs-in-use
• over 1 billion (109)
• hardly utilized

• Goggle / Yahoo servers
• ~ 1 Million
• Commodity hardware
• Well utilized

serve

• Can we harness these resources for service-type (SOA)
applications?

Artur Andrzejak Nov 17th, 2011

PREDICTING AVAILABILITY

Artur Andrzejak Nov 17th, 2011

Selection of Individual Resources

• We use SETI@home hosts which are most likely to be
available in the next time interval

• Two complementary methods
1. Ranking by the „regularity“ of past availability behavior
2. Short-term prediction of availability

• Trivial technique turned out as the best: use last availability
state as the prediction for next T hours

Initial
group

T

Which
failed?

Prediction Replacement

... x x
x

Initial
prediction

T

Artur Andrzejak Nov 17th, 2011

Filtering Hosts

• We want to find out, for each host, whether its
availability predictions are likely to be accurate

• We want hosts with high predictability:
– def.: expected accuracy of predictions from a model build on

historical data

• To estimate it, we use indicators of predictability
– fast to compute
– use only training data

A. Filter hosts by
predictability =>
create a pool of

"good" hosts

B. Make predictions
only for hosts from

the pool

Artur Andrzejak Nov 17th, 2011

Predictability Indicators

• We have tested, among others:
– Average length of an uninterrupted availability segment

– Size of the compressed availability trace

– Prediction error tested on a part of the training data (as a
control indicator)

– Number of availability state changes per week (aveSwitches)

week 1 week 2
avail avail available

"switch"

aveSwitches =
4 / 2 = 2

Artur Andrzejak Nov 17th, 2011

Prediction

A. Classifiers using models built on historical data
– Vectors of "raw" availability + preprocessed data over 30 days

B. Modeling on/off-intervals by Normal distribution
C. "TakeLast": take last known availability, and project it

• Predictions for each hour over two weeks

– starting now, will the host be available in the next k hours
• this is prediction interval length, pil

1 h 1 h 1 h 1 h 1 h

"now" prediction interval with pil = 4h

Artur Andrzejak Nov 17th, 2011

What drives accuracy?

• Dependence upon
– prediction interval length, pil
– training interval length
– host ownership type (private, school, work)

Artur Andrzejak Nov 17th, 2011

The Role of Predictability

• A little twist - we select R hosts from two groups:
– low predictability, with aveSwitches ≥ 7.47
– high predictability, with aveSwitches < 7.47

Artur Andrzejak Nov 17th, 2011

Necessary Redundancy

• High predictability group (pil=4)

Artur Andrzejak Nov 17th, 2011

Necessary Redundancy

• Low predictability group (pil=4)

Artur Andrzejak Nov 17th, 2011

Is this Redundancy too high?

• In high predictability group, we have required
redundancy of 35%
– One of the reviewers called this factor "disappointingly high"

• However, we consider this dramatically low
– In comparison, SETI@home has 200% redundancy (also used

for result validation)
– In terms of absolute savings, that equates to 165 TeraFLOPS

saved in a system such as FOLDING@home => significant
power savings

Artur Andrzejak Nov 17th, 2011

COLLECTIVE AVAILABILITY

Artur Andrzejak Nov 17th, 2011

Hierarchy of Cheap Resources

• Commodity machines in data centers
– Problems due to large number of unreliable boxes

• EC2 Spot Instances
– Indirect availability control (by bid price)

• Institutional / privately-owned
 non-dedicated resources

– Cycles donated by volunteers / office PCs
– No control of availability at all

Less control
of availability

Artur Andrzejak Nov 17th, 2011

Computing Pareto-Optimal Solutions

• How to compute all Pareto-optimal (N,d)'s?
• We assume that none of d expensive resources ever fail

– Then n = desired number of resources becomes n‘ := n - d

• If d fixed, computing (N,d)'s reduces to Problem A:
– Given n‘, T, and p, what is the minimum total size N to achieve

collective availability with probability ≥ p?

• We compute p for combinations of various n, N, d values
– Simulate many requests of n desired hosts over T hours

intervals
– Probability p = (# of trials with col. avail. achieved) / (all trials)
– Group solutions by similar p

	Accelerating scientific computing �without driving up the costs
	High-Performance Computing at ZIB Berlin
	Time-to-Solution is Important
	Faster Computing => More Processors?
	Making Time-To-Solution Cheaper
	online computing with mapreduce
	MapReduce Programming Model
	Example: Reverse Web-Link Graph
	Reverse Web-Link Graph: Solution
	Distributed MapReduce Frameworks
	Online Aggregation
	Online Computing
	Online MapReduce
	Applications to Data Analysis
	Algorithms
	K-Means Clustering Algorithm
	Applications and Future
	More Research Problems
	Efficient Map-Reduce
	MRStreamer
	Resources with Heterogeneous Availability
	Hierarchy of Cheap Resources
	Cheap Resources - EC2 Spot Instances
	Collective Availability
	Ensuring Long-Term Operation
	Guarantees on Collective Availability
	Combining Resource Types
	Pareto-Optimal Solutions
	Empirical Study
	Simulation of Availability
	Pareto-Optimal Solutions (N,d)
	Selection of Individual Resources
	Conclusions
	References
	Thank you.�questions?
	Additional slides
	Online computing
	MapReduce Programming Model
	Very Fast Decision Trees
	Comparizon Hoeffding (VFDT) vs. C4.5
	Resources and Cost:�Voluntarily computing
	Cost of Resouces
	predicting availability
	Selection of Individual Resources
	Filtering Hosts
	Predictability Indicators
	Prediction
	What drives accuracy?
	The Role of Predictability
	Necessary Redundancy
	Necessary Redundancy
	Is this Redundancy too high?
	Collective availability
	Hierarchy of Cheap Resources
	Computing Pareto-Optimal Solutions

