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High-Performance Computing at ZIB Berlin 

• ZIB operates a High 
Performance Computing 
(HPC) system HLRN-II 

• Ranked 39 in Top500 
Supercomputing Sites 

• Researchers (users) want 
to compute faster – why? 
 

 

• Usage of HLRN-I in 2008 
(previous system) 

 

Geosciences 
37.2% 

Physics 
27.5% 

Chemistry 
23% 

Engineering 
6.8% 

Other 
2.8% 

Bioinformatics 
2.7% 
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Time-to-Solution is Important 

• Researchers work to a large extend in an "exploratory" 
way 
– They evaluate last results and decide then on the next job(s) 
– Waiting time for a batch computation to finish is called Time-to-

Solution 

• Shortening the Time-to-Solution reduces 
significantly the total time of exploration 

... Computation 
Evaluation 

& 
Decisions 

Computation ... 

Time-to-Solution 
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Faster Computing => More Processors? 

• Parallelization is the primary way to speed up computations 
• Processor count in supercomputers increases each year 

– Speed of a rank X supercomputer doubles every 13 months 
– But # transistors ~ # cores per chip doubles only every 24 months 

• This implies higher costs - mainly due to power 

Cray X-
MP/24 

Cray Y-
MP4/264 

Cray T3D 
SC 192 

Cray T3E IBM 690 
pSeries 

SGI ICE 

Year 1986 1992 1994 1997 2002 2008 

GFlops/s 0.47 1.33 38 363 2662 125,000 

# Processors 2 4 192 512 512 ~ 2500 

Power (kW) 90 160 600 

Supercomputers at ZIB 
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Making Time-To-Solution Cheaper 

A. Online Computing with MapReduce 
Using preliminary results for accelerating decisions 
about next exploratory steps 
  

B. Resources with Heterogeneous Availability 
Combining highly available (and thus expensive) 
resources with less available but cheaper ones 
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ONLINE COMPUTING WITH MAPREDUCE  



Artur Andrzejak Nov 17th, 2011 

MapReduce Programming Model 

• Re-discovered by Google with goals: 
– "Reliability has to come from the software" 
– "How can we make it easy to write distributed 

programs?" 

 
• A major tool at Google 

– 2.2 million jobs in September 2007 (http://goo.gl/dsnDl) 
–  In 2008 about 100k MapReduce jobs per day 

• over 20 petabytes of data processed per day 
• each job occupies about 400 servers 
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Example: Reverse Web-Link Graph 

A Problem suitable for MapReduce:  
 In a set of html-documents, find out which other 

documents point (via links) to it (for each document) 
 

 

? 
? 

? 

? ? 

? 
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Reverse Web-Link Graph: Solution 

1. For each link to target t 
found in document 
source emit (t, source) 
 
 

2. Sort all pairs by same t's 
 
 

3. Results are lists: 
 listt(source) for each t 

 

source 
s1 (a, s1) 

(b, s1) 
(c, s1) 

source 
s2 (c, s2) 

(b, s2) 

a: (a, s1)  
b: (b, s1) (b, s2)  
c:  (c, s1) (c, s2) 

lista(s1)  
listb(s1, s2)  
listc(s2, s2) 

a 

b 
c 

c 

b 

parallel MAP 

parallel SORT 

parallel REDUCE 
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Distributed MapReduce Frameworks 

• Large data sets require distribution  
– e.g. 1000s of map / reduce tasks in parallel  

• Not only Google: Hadoop is an open-source 
implementation 

workers 
 
 
 
 
 

workers 
 
 
 
 
 
 

map  

map  

…
 

write <t, source> 
to local disks 

result file  

result file 
…

 

sort 

sort 

remote 
data reads 

reduce 

reduce 

result 1 

result k 

…
 

…
 

…
 

t: s1, s2,… master 

sort <t, source>  
by keys (t's) 
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Online Aggregation 

• J. M. Hellerstein, P. Haas and H. Wang introduced in 1997 the 
concept of Online Aggregation 
– Report online preliminary results (and confidence intervals) for very 

large queries 
 

 
 
 

 
• Shortens „Time-to-Decision“ in an exploratory data study 

– Allows to cancel a futile query prematurely 
– … Or stop fast if results are precise enough 
– Helps to identify early how to drill down data 

 

SELECT AVG(final_grade) from grades 
WHERE course_name = `CS186` 
GROUP BY major; 
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Online Computing 

• Generalizing to Online Computing 
– Arbitrary computations / data analysis 
– Parallelization 

• Parallelization gives two dimensions of scalability 

Degree of exploiting preliminary results 

D
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re
e 

of
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Online Aggregation 

Tr
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PC
 

Problems beyond 
reach of fastest 
supercomputers 
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Online MapReduce 

• We implemented an streaming version of MapReduce 
– Shared-memory; Scala + Java 
– Focus on data mining algorithms 
– Independently: a TR „Online Hadoop“ from UC Berkeley 

threads 
 
 
 
 
 
 

S 
t 
r 
e
a
m 

map  

map  

…
 

…
 group 

by key 

result 1  

result k 

threads 
 
 
 
 
 

reduce 

reduce 

…
 

…
 

messages 

messages 

online 
collector 

& 
visualizer 

control 

For received <key, val> 
forward val to “its” reducer 
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Applications to Data Analysis 

• Goal: faster deciding in data analysis studies 
– Estimating whether preliminary solution is stable enough 
– Detecting changes in data profile 

• Example: online convergence graph 
– Updates periodically the history of preliminary results 

 

M
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Training the Naive Bayes  
model for classifying of  
spam emails  
 

Seen after 20% is processed 

Seen after 40% of input is processed 
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Algorithms 

• Simpler algorithms require only one MapReduce pass 
– Aggregation (AVG, SUM, …), Linear regression, PCA, 

Classification (Naïve Bayes), … 

• Challenging are multi-pass algorithms 
– For iterative approaches, e.g. clustering via k-means 

• Efficiency dictates changes in algorithms / framework 

Feeding back preliminary results to avoid multiple passes  

threads 
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K-Means Clustering Algorithm 

mappers 
 
 
 
 
 
 
 

compute 
k clusters for D1 

…
 

…
 

input 
partition D1 

reducer 
 
 
 

 
 
 
 
 

merge 
centroids for 
D1,…,Dn to 

global 
centroids 

…
 

centroids (D1) 

online 
collector 

compute 
k clusters for Dn 

input 
partition Dn 

centroids (Dn) 

updated 
global  
centroids 

"error" of new 
algorithm 

"error" of  
off-line  
(standard) 
algorithm 
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Applications and Future 

• Generic method => useful in several scientific  domains 
– Analysis of very large data sets: astrophysics; geo-sciences, … 
– Analysis of data streams: network traffic analysis; particle 

physics (LHC), … 

• The MapReduce model will gain more importance for 
scientific computing in the future 
– Hides parallelism – programming distributed jobs much easier 
– Prefers in-place computation with few communication phases: 

higher parallel efficiency  - due to the “memory-wall” effect 

• Incremental version with “feeding back” preliminary 
results facilitates porting of existing algorithms 
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More Research Problems 

• How to enable machine learning algorithms to work 
incrementally (online) and in parallel? 

• How to help programmers to access / integrate 
MapReduce processing in only few lines of code? 

• How to reduce the inefficiencies of the frameworks 
for smaller data sets?  
– A job with 5 MB (linear regression) needs on Hadoop 30x longer 

than on a simple “ad-hoc” MapReduce simulator with 2 threads 
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Efficient Map-Reduce 

• One API but infrastructure-dependent middleware 
– Dynamic selection of the right infrastructure depending on 

the input size 
– Challenges: coherent APIs and „semantics“; high 

implementation effort 

Developer Single API Infrastructure-Specific 
Middleware 

Infrastructure 
Type 

CPU 

GPU 

Cluster 
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MRStreamer 

http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/ 

Features 
• Efficient shared-memory processing and “flip-a-

switch” cluster processing 
• Batch-mode and incremental (online) processing 
• Hadoop-compatible APIs 

 

http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
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RESOURCES WITH HETEROGENEOUS 
AVAILABILITY  
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Hierarchy of Cheap Resources 

• Commodity machines in data centers 
 
 

• Amazon EC2 Spot Instances 
 
 

• Institutional or privately-owned  
 non-dedicated resources 

 

Less control 
of availability 
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Cheap Resources - EC2 Spot Instances 

• Unused Amazon Elastic Compute Cloud (EC2) instances 
• Price depends on user bids and fluctuates 

– Example: US - N. Virginia;  Linux;  on Dec 30th, 2009, 17:00 CET 

 
 
 

 
• Users receive requested instances only their maximum 

bid is above the current Spot Price 
• Consequence: lower costs but jobs can be 

terminated without warning  

Size On-Demand Inst. Spot Instances Price Ratio 

Small $0.085 per hour $0.026 per hour 3.3 : 1 

X-large $0.68 per hour $0.265 per hour 2.6 : 1 
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Collective Availability 

• It is impossible to guarantee availability of any individual 
cheap resource in a given time interval  

• A new concept needed: collective availability 
– For given n and T, a group of N ≥ n resources achieves 

collective availability if at least n of these resources are still 
available after time interval T 

N = 6, n = 3 
4 ≥ n  survived, collective 
availability achieved 

time T 
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Ensuring Long-Term Operation 

• We replace failed hosts periodically  
• This causes costs due to 

– data migration, re-computations since last checkpoint, execution delay, … 
• Measured by migration rate := average (# failed resources / N)) 
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Guarantees on Collective Availability 

• Benefit: we can give statistical guarantees on 
collective availability  
– We control N (the total size of the resource group) and thus the 

redundancy of cheap resources   

 
• Problem A: Given n, T, and p – the availability level, 

what is the minimum total group size N to ensure 
collective availability with probability ≥ p? 
– Probability is understood as the average number of successes 

over many time intervals 
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Combining Resource Types 

• We include a set of d highly available (and possibly 
expensive) resources 
– Cheap resources are a complement for expensive ones anyway 

• This allows to balance cost against migration rate 
 

# desired 
hosts n 

# all 
 hosts N 

# expensive 
hosts d 

expensive 
hosts 

cheap 
hosts 

• Trade-offs (n and p 
fix) 
• Larger N: lower costs 

but higher migration 
rate 

• Larger d: higher costs 
but lower migration 
rate 
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Pareto-Optimal Solutions 

• We provide a user with a set Z of Pareto-optimal 
solutions (N,d) such that 
1. Each (N,d) ensures collective availability for given n, p, T 
2. Neither N nor d can be decreased (with other parameter 

constant) without violating 1.  

N: total number of resources 

d:
 n

um
be

r 
of

 e
xp

en
si

ve
 

re
so

ur
ce

s Here:  
under-provisioning 
(1. violated) 

Here:  
over-provisioning A Pareto-optimal solution 

(N*,d*) with known 
• total costs 
• migration rate 

User‘s potential choices 



Artur Andrzejak Nov 17th, 2011 

Empirical Study 

• We have conducted empirical study using real 
availability data from ~10,000 SETI@home hosts 
– Collected from Dec 2007 and Feb 2008 via BOINC clients 

• Extreme case: least available type of cheap resources  
– No data on EC2 Spot Instances, but the method would be 

exactly the same 

• Assumptions 
– Cost of cheap resources: $0 
– Cost of expensive resources: $0.10 per hour (~ Amazon‘s EC2) 
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Simulation of Availability 

• Probability p of achieving collective availability 
– For different (N, d) combinations and n = 50 desired resources 
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Availability 
level p
0.90-0.93
0.93-0.96
0.96-1.00

Pareto-Optimal Solutions (N,d) 

• For different availability levels p 
– Recall: migration rate := average of (# failed resouces / N) 

cost = $4.3 per hour 
migration rate = 0.01 

cost = $0 per hour 
migration rate = 0.1 

User's choice depends on 
application, budget, data center…  
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Selection of Individual Resources 

• Select hosts which are most likely to be available in 
the next time interval 

• Short-term prediction of availability 
– A trivial technique turned out as the best: use last availability state 

as the prediction for next T hours 
 

Initial 
group 

T 

Which 
failed? 

Prediction Replacement 

... x x 
x 

Initial 
prediction 

T 
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Conclusions 

• Exploratory scientific computing and large-scale data 
analysis profits from reduced Time-to-Solution 

• There are approaches with better cost-efficiency 
than increasing processor count 

• Deployment depends on specific application 
– Sensitivity of the application to resource failures 
– Metrics to estimate quality of a preliminary solution 

• There are several non-trivial research challenges 
– Parallel and incremental machine learning algorithms 
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THANK YOU. 
QUESTIONS? 
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ADDITIONAL SLIDES 
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ONLINE COMPUTING 
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MapReduce Programming Model 

• Re-discovered by Google with goals: 
– "Reliability has to come from the software" 
– "How can we make it easy to write distributed programs?" 

• „Scalable“ in the ratio of faults and in the degree of 
parallelism 

• A major tool at Google 
– 29k jobs in August 2004 and 2.2 million in September 2007 
–  In 2008 about 100k MapReduce jobs per day 

• each occupies about 400 servers 
• takes about 5 to 10 minutes to finish 
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Very Fast Decision Trees 

 Domingos und Hulten (2000): Hoeffding-Trees (VFDT, Very 
Fast Decision Trees) 

 Creates trees incrementally 
 Uses Hoeffding inequality to decide how to extend a tree by 

splitting dataset at a leaf 
 It bounds (with high prob.) the error of new decision node 

compared to the tree using all data ("off-line tree") 
 Properties 

 Need only one pass through data and memory ~ to tree size  
 Very fast – I/O transfer is the bottleneck 
 Asymptotically H-trees become same as off-line trees 
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Comparizon Hoeffding (VFDT) vs. C4.5 

 Artificial data (100 attributes, 2 classes) (Domingos und Hulten 2000)  
 Memory requirements of VFDT's were never larger than of C4.5 

Accuracy 

Number of 
training 
examples 
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RESOURCES AND COST: 
VOLUNTARILY COMPUTING 
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Cost of Resouces 

• Where is the second-fastest computer in the world? 
• Almost everywhere: home / office PCs participating in 

voluntarily computing provide largest computing power 
• Folding@home: 6.5 petaflops as of Oct 2011 

• K computer RIKEN (AICS): 8.7 PF (Jun 2011) 
 

•  PCs-in-use 
•  over 1 billion (109) 
•  hardly utilized 

 
• Goggle / Yahoo servers 
• ~ 1 Million 
• Commodity hardware 
• Well utilized  

serve 

• Can we harness these resources for service-type (SOA) 
applications? 
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PREDICTING AVAILABILITY 
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Selection of Individual Resources 

• We use SETI@home hosts which are most likely to be 
available in the next time interval 

• Two complementary methods 
1. Ranking by the „regularity“ of past availability behavior 
2. Short-term prediction of availability 

• Trivial technique turned out as the best: use last availability 
state as the prediction for next T hours 

 

Initial 
group 

T 

Which 
failed? 

Prediction Replacement 

... x x 
x 

Initial 
prediction 

T 
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Filtering Hosts 

• We want to find out, for each host, whether its 
availability predictions are likely to be accurate 

• We want hosts with high predictability: 
– def.: expected accuracy of predictions from a model build on 

historical data 

• To estimate it, we use indicators of predictability 
– fast to compute   
– use only training data  

A. Filter hosts by 
predictability => 
create a pool of 

"good" hosts 

B. Make predictions 
only for hosts from 

the pool 
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Predictability Indicators 

• We have tested, among others: 
– Average length of an uninterrupted availability segment 

– Size of the compressed availability trace  

– Prediction error tested on a part of the training data (as a 
control indicator) 

– Number of availability state changes per week (aveSwitches) 

 

week 1 week 2 
avail avail available 

"switch" 

aveSwitches = 
4 / 2 = 2 
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Prediction 

A. Classifiers using models built on historical data 
– Vectors of "raw" availability + preprocessed data over 30 days 

B. Modeling on/off-intervals by Normal distribution 
C. "TakeLast": take last known availability, and project it 

 
• Predictions for each hour over two weeks 

– starting now, will the host be available in the next k hours 
• this is prediction interval length, pil 

1 h 1 h 1 h 1 h 1 h 

"now" prediction interval with pil = 4h 
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What drives accuracy? 

• Dependence upon 
– prediction interval length, pil 
– training interval length 
– host ownership type (private, school, work) 
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The Role of Predictability 

• A little twist - we select R hosts from two groups: 
– low predictability, with aveSwitches ≥ 7.47 
– high predictability, with aveSwitches < 7.47 
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Necessary Redundancy 

• High predictability group (pil=4) 
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Necessary Redundancy 

• Low predictability group (pil=4) 
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Is this Redundancy too high? 

• In high predictability group, we have required 
redundancy of 35% 
– One of the reviewers called this factor "disappointingly high" 

• However, we consider this dramatically low 
– In comparison, SETI@home has 200% redundancy (also used 

for result validation) 
– In terms of absolute savings, that equates to 165 TeraFLOPS 

saved in a system such as FOLDING@home => significant 
power savings 
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COLLECTIVE AVAILABILITY 
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Hierarchy of Cheap Resources 

• Commodity machines in data centers 
– Problems due to large number of unreliable boxes 

• EC2 Spot Instances 
– Indirect availability control (by bid price) 

• Institutional / privately-owned  
 non-dedicated resources 

– Cycles donated by volunteers / office PCs 
– No control of availability at all 

Less control 
of availability 
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Computing Pareto-Optimal Solutions 

• How to compute all Pareto-optimal (N,d)'s? 
• We assume that none of d expensive resources ever fail 

– Then n = desired number of resources becomes n‘ := n - d 

• If d fixed, computing (N,d)'s reduces to Problem A: 
– Given n‘, T, and p, what is the minimum total size N to achieve 

collective availability with probability ≥ p? 

• We compute p for combinations of various n, N, d values 
– Simulate many requests of n desired hosts over T hours 

intervals 
– Probability p = (# of trials with col. avail. achieved) / (all trials) 
– Group solutions by similar p 
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