Artur Andrzejak Nov 17th, 2011

RUPRECHT-KARLS-

UNIVERSITAT
HEIDELBERG

Accelerating scientific computing
without driving up the costs

Prof. Dr. Artur Andrzejak

artur@uni-hd.de

http://pvs.ifi.uni-heidelberg.de/�

Artur Andrzejak Nov 17t, 2011

High-Performance Computing at ZIB Berlin

ZIB operates a High e Usage of HLRN-I in 2008
Performance Computing (previous system)

(HPC) system HLRN-II

Ranked 39 in Top500 Bioinformatics Other

2.71% 2.8%

Supercomputing Sites

Researchers (users) want

to compute faster — why?

Physics G :
27 5% eosciences

37.2%

_

Chemistry
23%

-

Engineering
6.8%

Artur Andrzejak Nov 17th, 2011

Time-to-Solution is Important

 Researchers work to a large extend in an "exploratory"
way
— They evaluate last results and decide #/1en on the next job(s)

— Waiting time for a batch computation to finish is called Time-to-
Solution

 Shortening the Time-to-Solution reduces
significantly the total time of exploration

Evaluation
Computation & Computation
Decisions
<€ >

Time-to-Solution

Artur Andrzejak Nov 17th, 2011

Faster Computing => More Processors?

« Parallelization is the primary way to speed up computations

 Processor count in supercomputers increases each year
— Speed of a rank X supercomputer doubles every 13 months
— But # transistors ~ # cores per chip doubles only every 24 months

e This implies higher costs - mainly due to power

Cray X- | Cray Y- Cray T3D | Cray T3E | IBM 690 | SGI ICE
MP/24 MP4/264 | SC 192 pSerieS

Year 1986 1992 1994 1997 2002 2008
GFlops/s 0.47 1.33 38 363 2662 125,000
Processors 2 4 192 512 512 —~ 2500
Power (kW) 90 160 600

Supercomputers at ZIB

Artur Andrzejak Nov 17th, 2011

Making Time-To-Solution Cheaper

A. Online Computing with MapReduce

Using preliminary results for accelerating decisions
about next exploratory steps

B. Resources with Heterogeneous Availability
Combining highly available (and thus expensive)
resources with less available but cheaper ones

Artur Andrzejak Nov 17th, 2011

ONLINE COMPUTING WITH MAPREDUCE

Artur Andrzejak Nov 17th, 2011

MapReduce Programming Model

* Re-discovered by Google with goals:
— "Reliability has to come from the software"

— "How can we make it easy to write distributed
programs?"

* A major tool at Google
— 2.2 million jobs in September 2007 (http://goo.gl/dsnDlI)
— In 2008 about 100k MapReduce jobs per day
» over 20 petabytes of data processed per day
» each job occupies about 400 servers

Artur Andrzejak Nov 17th, 2011

Example: Reverse Web-Link Graph

’) :
H
5
1“
.
.
.
.
.
.
.
S
H o
A
. =
.
.
. ’A
.
S
S
5
* .0
5 o
5
5 %
‘ O "}
o E aa,
. e,
., - e,
0‘ .'..
., ",
e, Tea,
. Tay
o ~
= . .
" .
= .
e, S
a .
LN S
e, 0
.
", .
", . L %
. .
.....
N .
.y .
. .

.~ =
H
H

A Problem suitable for MapReduce:

In a set of html-documents, find out which other
documents point (via links) to it (for each document)

Artur Andrzejak

Nov 17t, 2011

Reverse Web-Link Graph: Solution

. For each link to target t
found in document
source emit (t, source)

. Sort all pairs by same t's

. Results are lists:
list,(source) for each t

parallel MAP
source source
Sl a (a, Sl) SZ ““““ vC (
------ 4 C, 52)
C‘ (b1 Sl) ., |:> (b, SZ)
b (c, sy) “b
a: (a, s,)

b: (b, s,) (b, s,) parallel SORT
c: (c, sy)(c, s))

list,(s,)
list, (s, S,)
list.(s,, S,)

parallel REDUCE

Artur Andrzejak Nov 17t, 2011

Distributed MapReduce Frameworks

o Large data sets require distribution
— e.g. 1000s of map / reduce tasks in parallel

* Not only Google: Hadoop is an open-source
Implementation

workers

R ep |

write <t, source> remote sort <t, source>
to local disks data reads by keys (t's)

Artur Andrzejak Nov 17th, 2011

Online Aggregation

 J. M. Hellerstein, P. Haas and H. Wang introduced in 1997 the
concept of Online Aggregation

— Report online preliminary results (and confidence intervals) for very
large queries

i Postgres95 Online Aggregation Interface !Elﬂ
ma‘jor AVG Confidence Interval

1 2.2721¢ 95 0.160417

2.56146 95 0.160417

SELECT AVG(final _grade) from grades
WHERE course _name = CS186°
GROUP BY major;

2.66702 95 0.160417
2.86235 95 0.160417

3.12048 95 0.160417

C-C-NC-RCRCNC

2.89645 25 0.160417

Cancel All 14% doneld

———

 Shortens ,, Time-to-Decision in an exploratory data study
— Allows to cancel a futile query prematurely
— ... Or stop fast if results are precise enough
— Helps to identify early how to drill down data

Artur Andrzejak Nov 17th, 2011

Online Computing

 Generalizing to Online Computing
— Arbitrary computations / data analysis
— Parallelization

« Parallelization gives two dimensions of scalability

N
Ll

Problems beyond
reach of fastest
supercomputers

Traditional HPC

Degree of parallelization

Online Aggregation

v

Degree of exploiting preliminary results

Artur Andrzejak Nov 17t, 2011

Online MapReduce

 We implemented an streaming version of MapReduce
— Shared-memory; Scala + Java
— Focus on data mining algorithms
— Independently: a TR ,,Online Hadoop* from UC Berkeley

threads ¥ 3

S threads N

map < reduce online W

rou collector
group -

by key N .| Vvisualizer
T reduce
" -

*.| For received <key, val>
forward val to “its” reducer

messages

Artur Andrzejak Nov 17th, 2011

Applications to Data Analysis

o Goal: faster deciding in data analysis studies
— Estimating whether preliminary solution is stable enough
— Detecting changes in data profile

« Example: online convergence graph
— Updates periodically the history of preliminary results

Seen after 20% is processed

0.9 — : : : .
I 1 '

o8 -

o7

Training the Naive Bayes
model for classifying of
spam emails

oe -

o5 -

0.4 -

0.2

0.2

0.1

Misclassification rate

-0.1

Oy 0.1 0.2 0.2 0.4 0.5 0.e 0.7 0.2 0.9 1
|

Seen after 40% of input is processed

Artur Andrzejak Nov 17th, 2011

Algorithms

Simpler algorithms require only one MapReduce pass

— Aggregation (AVG, SUM, ...), Linear regression, PCA,
Classification (Naive Bayes), ...

Challenging are multi-pass algorithms
— For iterative approaches, e.g. clustering via k-means
Efficiency dictates changes in algorithms / framework

> online

group : collector &

v : : ELE
: ‘ by key > 5| Visualizer
ML 2D jRg ressaces

a
|

Feeding back preliminary results to avoid multiple passes

Artur Andrzejak

K-Means Clustering

Nov 17t, 2011

Algorithm

updated
mappers reducer global
: 4 \ |centroids
input compute .
" ntroi D
M L k clusters for D, centroids (D,) merge
- _ cgntrmgs Igr e
- . 1re+3=n collector
: global
Input compute : centroids
bw k clusters for D, EELIRISEN (B \)
x 10° km-c 107 km-c
n n 10 T T T T T w T 2.1 T w w T
error Of nEW ‘ —— Uon # aux. clusters = 1400
algonthm al N | = = —#aux. clusters = 1000
- - 2.05
-
B o NG o
"error" of N o
off-line . o
(standard) ~risiiiiiia TITERRTER
algorithm S S S S S S SR AN | | ;
100 300 500 700 900 1100 1300 0.2 04 0.6 0.8 1

~ larger memory of mappers

processed input fraction

Artur Andrzejak Nov 17th, 2011

Applications and Future

e Generic method => useful in several scientific domains
— Analysis of very large data sets: astrophysics; geo-sciences, ...
— Analysis of data streams: network traffic analysis; particle
physics (LHC), ...
 The MapReduce model will gain more importance for
scientific computing in the future
— Hides parallelism — programming distributed jobs much easier
— Prefers in-place computation with few communication phases:
higher parallel efficiency - due to the “memory-wall” effect
* Incremental version with “feeding back” preliminary
results facilitates porting of existing algorithms

Artur Andrzejak Nov 17th, 2011

More Research Problems

« How to enable machine learning algorithms to work
Incrementally (online) and in parallel?

 How to help programmers to access / integrate
MapReduce processing in only few lines of code?

e How to reduce the inefficiencies of the frameworks
for smaller data sets?

— A job with 5 MB (linear regression) needs on Hadoop 30x longer
than on a simple “ad-hoc” MapReduce simulator with 2 threads

Artur Andrzejak Nov 17th, 2011

Efficient Map-Reduce

* One API but infrastructure-dependent middleware

— Dynamic selection of the right infrastructure depending on
the input size

— Challenges: coherent APIs and ,,semantics®; high
Implementation effort

CPU

O B on
Cluster

w ¥
" bt [— o o Curvacta
[s Conaing o

p || * mowm canartaens - e Tearg ey

B " " ot " Upgras i Ve &
= Cotmaton Loy * SO Te irtfoten

- * bpon b e " Levoecwten | 8 004 Dbiesaet
x - W e * e |+ A

£ 2uuaicer Bl 2vnest Fpr cvuncie 20y asucse HROE § 20¥

Developer Single API Infrastructure-Specific Infrastructure
Middleware Type

Artur Andrzejak

Nov 17t, 2011

MRStreamer

Parallel and Distributed Systems Group
Prof. Dr. Artur Andrzejak

Institute of Computer Science

Heidelberg University

UNIVERSITAT
HEIDELBERG

MRStreamer

Home

Team

Teaching

Publications

Software
Octave scripts in KNIME
MRStreamer L

Version 0.9
Job openings

Contact

Features

Overview

MRStreamer is a MapReduce framework implementation which provides a basic Apache Hadoop-compatible API and advanced streaming MapReduce
features.

Download

1er. This is the first public release and does not implemement the whaole Hadoop APL. See the TODO list at

Download the |atest version of
the end of this page.

Installation and basic usage
Unpack the downloaded file on all the machines you want your MapReduce programs to run on.

Write your MapReduce program targetting either the old org.apache.hadoop.mapred or the new org.apache.hadoop.mapreduce API. Instead of using
the Hadoop JobClient you will need to use the MRSJobClient and instead of Job MRSIob, respectively. Examples can be found in the examples
subdirectory.

The machines need tn have a shared filesvsrem sich as NFS. since MRStreamer does not imnlement HDFS. Run J/server nn one node and fworker on

o Efficient shared-memory processing and “flip-a-
switch” cluster processing

e Batch-mode and incremental (online) processing
 Hadoop-compatible APIs

http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�
http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/�

Artur Andrzejak Nov 17th, 2011

RESOURCES WITH HETEROGENEOUS
AVAILABILITY

Artur Andrzejak Nov 17t 2011

Hierarchy of Cheap Resources

« Commodity machines in data centers M—

e Amazon EC2 Spot Instances

|0JJUOD SSO7

o
—
Q
<
=3
QD
=7
g

 [Institutional or privately-owned
non-dedicated resources

Artur Andrzejak Nov 17th, 2011

Cheap Resources - EC2 Spot Instances

Unused Amazon Elastic Compute Cloud (EC2) instances

Price depends on user bids and fluctuates
— Example: US - N. Virginia; Linux; on Dec 30th, 2009, 17:00 CET

On-Demand Inst. | Spot Instances _

Small $0.085 per hour $0.026 per hour 3.3:1
X-large $0.68 per hour $0.265 per hour 26:1

Users receive requested instances only their maximum
bid is above the current Spot Price

Consequence: lower costs but jobs can be
terminated without warning

Artur Andrzejak Nov 17th, 2011

Collective Availability

e It is impossible to guarantee availability of any individual
cheap resource in a given time interval

* A new concept needed: collective availability

— For given n and T, a group of N = n resources achieves
collective availability if at least n of these resources are still

available after time interval T

1=l

e

4 > n survived, collective
N=6,n=3 availability achieved

E&

E& time T ﬂi&

Artur Andrzejak Nov 17th, 2011
Ensuring Long-Term Operation

We replace failed hosts periodically

This causes costs due to
— data migration, re-computations since last checkpoint, execution delay, ...

Measured by migration rate .= average (# failed resources / N))

working set
for interval i

initial data migration

(2]
]
(%3]
o
e
Qo
o
(]
e
(&)
Y
o
c
ks
)
(&)
Q
(b}
),

interval i of
length T

Artur Andrzejak Nov 17th, 2011

Guarantees on Collective Availability

Benefit: we can give statistical guarantees on
collective availability

— We control N (the total size of the resource group) and thus the
redundancy of cheap resources

Problem A: Given n, T, and p — the availability level,
what is the minimum total group size N to ensure
collective availability with probability = p?

— Probability i1s understood as the average number of successes
over many time intervals

Artur Andrzejak Nov 17th, 2011

Combining Resource Types

 We include a set of d highly available (and possibly
expensive) resources
— Cheap resources are a complement for expensive ones anyway

 This allows to balance cost against migration rate

() Trade—OffS (n and p # all T >l ~
. hosts N
fix) osts Wererereeermereeesans < 30 N
¢ Large_r N IOV_/er C_OStS # desired S ;{{lﬁ‘f Eﬂ hosts
but higher migration hosts n
3 > i |
rate >
o Larger d: higher costs # expensive _,ﬂ. N expensive
but lower migration OSED o [rost

rate

Artur Andrzejak Nov 17th, 2011

Pareto-Optimal Solutions

We provide a user with a set Z of Pareto-optimal
solutions (N,d) such that
1. Each (N,d) ensures collective availability for given n, p, T

2. Neither N nor d can be decreased (with other parameter
constant) without violating 1.

Here:
over-provisioning

-1 A Pareto-optimal solution
(N*,d*) with known

» total costs

e migration rate

.
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o
.
.
.
.
.
.
.
.
.
.
o
.
.
.
.
.
.
.
.
.
A

Here:

*a
L
L
.
b
.....
L
.
"
L
.
b3

under-provisioning
(1. violated)

resources

ot
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8

d: number of expensive

N: total number of resources

Artur Andrzejak Nov 17th, 2011

Empirical Study

 We have conducted empirical study using real
availability data from ~10,000 SETI@home hosts
— Collected from Dec 2007 and Feb 2008 via BOINC clients

 Extreme case: least available type of cheap resources

— No data on EC2 Spot Instances, but the method would be
exactly the same

e Assumptions
— Cost of cheap resources: $0
— Cost of expensive resources: $0.10 per hour (— Amazon's EC2)

Artur Andrzejak Nov 17th, 2011

Simulation of Availability

Probability p of achieving collective availability
— For different (N, d) combinations and n = 50 desired resources

Probability p

N = total # 50 0 d = # of expensive
of resources resources

Artur Andrzejak Nov 17th, 2011

Pareto-Optimal Solutions (N,d)

e For different availability levels p
— Recall: migration rate := average of (# failed resouces / N)

cost = $4.3 per hour User's choice depends on
migration rate = 0.01 application, budget, data center...

50 /

O)‘/
O
= 45.,;;: ,,,,,,,,,,, Availability
% e, level p
o N
PP N I 0.90-0.93
g o T ++-0.93-0.96
% """"""""""""
R T 0.96-1.00
< 20 B— cost = $0 per hour
v T B
- R migration rate = 0.1
(@) "’4’&.~\ """"""""
q.t 10 .&:4: ,,,,,,,,,,,,,,,,,
1 BN
S A s T, Ve
%2 o4 56 58 60 62

N = total # of resources

Artur Andrzejak Nov 17th, 2011

Selection of Individual Resources

« Select hosts which are most likely to be available in
the next time interval

» Short-term prediction of availability

— A trivial technique turned out as the best: use last availability state
as the prediction for next T hours

Initial Initial Which
prediction group failed?

Prediction Replacement

Artur Andrzejak Nov 17th, 2011

Conclusions

Exploratory scientific computing and large-scale data
analysis profits from reduced Time-to-Solution

There are approaches with better cost-efficiency
than increasing processor count

Deployment depends on specific application
— Sensitivity of the application to resource failures
— Metrics to estimate quality of a preliminary solution

There are several non-trivial research challenges
— Parallel and incremental machine learning algorithms

Artur Andrzejak Nov 17th, 2011

References

Joos-Hendrik Bése, Artur Andrzejak, Mikael Hogqvist: Beyond
Online Aggregation: Parallel and Incremental Data Mining
with Online MapReduce, ACM MDAC 2010, Raleigh, NC, 2010.

Artur Andrzejak, Derrick Kondo, David P. Anderson: Exploiting
Non-Dedicated Resources for Cloud Computing, 12th IEEE/
IFIP Network Operations and Management Symposium (NOMS),
Osaka, 2010.

Derrick Kondo, Artur Andrzejak, David P. Anderson: On Correlated
Availability in Internet-Distributed Systems, 9th IEEE/ACM
International Conference on Grid Computing (Grid), Tsukuba, 2008.

Artur Andrzejak, Derrick Kondo, David P. Anderson: Ensuring
Collective Availability in Volatile Resource Pools via
Forecasting, 19th IFIP/IEEE Distributed Systems: Operations and
Management (DSOM), Samos, 2008.

Artur Andrzejak Nov 17th, 2011

THANK YOU.
QUESTIONS?

Artur Andrzejak Nov 17th, 2011

ADDITIONAL SLIDES

Artur Andrzejak Nov 17th, 2011

ONLINE COMPUTING

Artur Andrzejak Nov 17th, 2011

MapReduce Programming Model

» Re-discovered by Google with goals:
— "Reliability has to come from the software"
— "How can we make it easy to write distributed programs?"

o ,Scalable” in the ratio of faults and in the degree of
parallelism

A major tool at Google
— 29k jobs in August 2004 and 2.2 million in September 2007
— In 2008 about 100k MapReduce jobs per day
» each occupies about 400 servers
» takes about 5 to 10 minutes to finish

Artur Andrzejak Nov 17th, 2011

Very Fast Decision Trees

¢ Domingos und Hulten (2000): Hoeffding-Trees (VFDT, Very
Fast Decision Trees)

@ Creates trees incrementally

¢ Uses Hoeffding inequality to decide how to extend a tree by
splitting dataset at a leaf

@ It bounds (with high prob.) the error of new decision node
compared to the tree using all data ("off-line tree")

@ Properties
@ Need only one pass through data and memory ~ to tree size
@ Very fast — 1/0 transfer is the bottleneck
@ Asymptotically H-trees become same as off-line trees

Artur Andrzejak Nov 17th, 2011

Comparizon Hoeffding (VFDT) vs. C4.5

90
\85-
80

75 F

Accuracy

70 ¢

65 r

C45 ——

60 r Hoeffding ————] Number of
Hoeffdmg (C4 5 boot) x trainin
5y ———t— . ' L/ J

100 1000 10000 100000 1¢+006 1¢+007 le+00s S<MPIES

¢ Artificial data (100 attributes, 2 classes) (Domingos und Hulten 2000)
¢ Memory requirements of VFDT's were never larger than of C4.5

Artur Andrzejak Nov 17th, 2011

RESOURCES AND COST:
VOLUNTARILY COMPUTING

Artur Andrzejak Nov 17th, 2011

Cost of Resouces

Where is the second-fastest computer in the world?

Almost everywhere. home / office PCs participating in
voluntarily computing provide largest computing power

* Folding@home: 6.5 petaflops as of Oct 2011
K computer RIKEN (AICS): 8.7 PF (Jun 2011)

Can we harness these resources for service-type (SOA)
applications?

* PCs-in-use
« over 1 billion (10°)

« Goggle / Yahoo servers | >
« ~ 1 Million Serve

« Commodity hardware
» Well utilized

Artur Andrzejak Nov 17th, 2011

PREDICTING AVAILABILITY

Artur Andrzejak Nov 17th, 2011

Selection of Individual Resources

« We use SETI@home hosts which are most likely to be
available in the next time interval

 Two complementary methods
1. Ranking by the ,reqularity” of past availability behavior
2. Short-term prediction of availability

 Trivial technique turned out as the best: use last availability
state as the prediction for next T hours

Initial Initial Which Prediction Replacement
prediction group failed?

Artur Andrzejak Nov 17th, 2011

Filtering Hosts

We want to find out, for each host, whether its
availability predictions are likely to be accurate
We want hosts with high predictability:

— def.. expected accuracy of predictions from a moael build on
historical data

To estimate it, we use indicators of predictability
— fast to compute
— use only training data

A. Filter hosts by
predictability ==

B. Make predictions
only for hosts from

create a pool of the pool

"good" hosts

Artur Andrzejak Nov 17th, 2011

Predictability Indicators

We have tested, among others:
— Average length of an uninterrupted availability segment
— Size of the compressed availability trace

— Prediction error tested on a part of the training data (as a
control indicator)

- Number of availability state changes per week (aveSwitches)

available

week 2 A4]2=2

aveSwitches =

o

Artur Andrzejak Nov 17th, 2011

Prediction

. Classifiers using models built on historical data

— Vectors of "raw" availability + preprocessed data over 30 days

. Modeling on/off-intervals by Normal distribution
. "TakeLast": take last known availability, and project it

Predictions for each hour over two weeks

— starting now, will the host be available in the next k hours
 this is prediction interval length, pil

1h 1h 1h 1h 1h

1‘—

"now" prediction interval with pil = 4h

Artur Andrzejak Nov 17th, 2011

What drives accuracy?

 Dependence upon
— prediction interval length, pil
— training interval length
— host ownership type (private, school, work)

0.17 . . . : ,
Il training days = 10 -1
0.16H -training days = 20 b) [work
[Jtraining days = 30 0.250 [Jschool
0.15H :hraiuing days = 40 b Bl home —
= [training days = 50]
£ 0.14 1 [l training days = 60]

o
[]
T

Averaged prediction error
[=]
T

=
-

0.05F

1 2 3 4 1 2 4 8 16
Prediction interval length pi/ (hours) Prediction interval length pi/ (hours)

Artur Andrzejak Nov 17th, 2011

The Role of Predictability

o A little twist - we select R hosts from two groups:
— low predictability, with aveSwitches > 7.47
— high predictabllity, with aveSwitches < 7.47

1
s]
B 0GB e i
o : : :
::; osp* - numM values: 48873 - - e -
% o7k meanté-“rG:GdSQ _
o : ; :
o 0.BF e median:-7:.4667-- - - IR et .
o : s |
S 0.5F-w e N0 R AR R A -
S ; | ;
= 0.4 R max: 165:9------------- R AR AR -
[11] - . .
Uc_:n 0.3 - m - -
=
-
= 02_ .. -
% - .
o 0_1 | B e e ;. —

0 e R

0] 50 100 15 200

Error Predictability (aveSwitches)

Artur Andrzejak Nov 17th, 2011

Necessary Redundancy

* High predictability group (pil=4)

of hosts

0.995(
0.99H

0.985R

0.98F

0.975F

0.97F

Success Rate

: 0.965}
I B — — TR— 4 p—_ | 096l

O ~ i 0.955F e ~ |

0.2 0.3 0.4 0.5 0'950 0.1 0.2
Redundancy Redundancy

(a) Complete range (b) Zoomed-in range

Artur Andrzejak Nov 17th, 2011

Necessary Redundancy

* Low predictability group (pil=4)

] # of hosts

0.995H = m =4 |

o99H...... 64 1'\.1'\._

Success Rate

007} b et

0,965k i RN R e — i
T OO OO OO SOOI OO SO ool

0055k oo b el R T

, : . 09 ; i : ; :
0.2 0.3 0.4 0.5 05.47 0.475 0.48 0.485 0.49 0.495 0.5
Redundancy Redundancy

E
(a) Complete range (b) Zoomed-in range

Artur Andrzejak Nov 17th, 2011

Is this Redundancy too high?

* In high predictability group, we have required
redundancy of 35%b

— One of the reviewers called this factor "disappointingly high"
 However, we consider this dramatically low

— In comparison, SETI@home has 200% redundancy (also used
for result validation)

— In terms of absolute savings, that equates to 165 TeraFLOPS

saved in a system such as FOLDING@home => significant
power savings

Artur Andrzejak Nov 17th, 2011

COLLECTIVE AVAILABILITY

Artur Andrzejak Nov 17t, 2011

Hierarchy of Cheap Resources

Commodity machines in data centers
— Problems due to large number of unreliable boxes

EC2 Spot Instances

— Indirect availability control (by bid price)
Institutional / privately-owned
non-dedicated resources

— Cycles donated by volunteers / office PCs
— No control of availability at all

Aujige|rene Jo
|0JJUOJ SSOT

Artur Andrzejak Nov 17th, 2011

Computing Pareto-Optimal Solutions

How to compute all Pareto-optimal (N,d)'s?

We assume that none of d expensive resources ever fail
— Then n = desired number of resources becomes n' :=n - d

If d fixed, computing (N,d)'s reduces to Problem A:
— Given n', T, and p, what is the minimum total size N to achieve
collective availability with probability > p?
We compute p for combinations of various n, N, d values

— Simulate many requests of n desired hosts over T hours
Intervals

— Probability p = (# of trials with col. avail. achieved) / (all trials)
— Group solutions by similar p

	Accelerating scientific computing �without driving up the costs
	High-Performance Computing at ZIB Berlin
	Time-to-Solution is Important
	Faster Computing => More Processors?
	Making Time-To-Solution Cheaper
	online computing with mapreduce
	MapReduce Programming Model
	Example: Reverse Web-Link Graph
	Reverse Web-Link Graph: Solution
	Distributed MapReduce Frameworks
	Online Aggregation
	Online Computing
	Online MapReduce
	Applications to Data Analysis
	Algorithms
	K-Means Clustering Algorithm
	Applications and Future
	More Research Problems
	Efficient Map-Reduce
	MRStreamer
	Resources with Heterogeneous Availability
	Hierarchy of Cheap Resources
	Cheap Resources - EC2 Spot Instances
	Collective Availability
	Ensuring Long-Term Operation
	Guarantees on Collective Availability
	Combining Resource Types
	Pareto-Optimal Solutions
	Empirical Study
	Simulation of Availability
	Pareto-Optimal Solutions (N,d)
	Selection of Individual Resources
	Conclusions
	References
	Thank you.�questions?
	Additional slides
	Online computing
	MapReduce Programming Model
	Very Fast Decision Trees
	Comparizon Hoeffding (VFDT) vs. C4.5
	Resources and Cost:�Voluntarily computing
	Cost of Resouces
	predicting availability
	Selection of Individual Resources
	Filtering Hosts
	Predictability Indicators
	Prediction
	What drives accuracy?
	The Role of Predictability
	Necessary Redundancy
	Necessary Redundancy
	Is this Redundancy too high?
	Collective availability
	Hierarchy of Cheap Resources
	Computing Pareto-Optimal Solutions

